DE-FE0000870

Multifunctional Nanowire/Film Composite-based Bimodular Sensors for In-situ, Real Time High Temperature Gas Detection

Pu-Xian Gao and Yu Lei

Department of Chemical, Materials and Biomolecular Engineering & Institute of Materials Science
University of Connecticut, Storrs, CT 06269-3136

03/14/2012

@ DOE/NETL Cross-Cutting Research Program
Project Review Meeting

OUTLINE

Project Overview

Year-2 Project Accomplishments

- ---- nanowire arrays based sensors
- ---- nanofibrous films based sensors
- ---- Bimodular sensor fabrication and initial testing

Progress Chart and Deliverables

Project Overview

- Date: 10/01/2009 -9/31/2012
- Project Objective:
 - -To develop a unique class of multifunctional metal oxide/perovskite based composite nanosensors for industrial and combustion gas detection at high temperature (700 °C-1300 °C).

Task #1 Nanowire/Nanofilm Composites

Materials Advantages: 1) Ultrahigh surface area; 2) High thermal stability; 3) Strong adherence; 4) Low cost; 5) High tailoring ability

Task #2 In-situ and Real-time Biomodular Gas Sensors

Sensors Advantages: 1) Ultrahigh surface area induce high sensitivity; 2) Catalytic filtering induced selectivity enhancement; 3) High temperature thermal stability; 4) Low cost; 5) High tailoring ability; 6) Two nearly independent measurement data sets (bi-modular)

Year-2 Accomplishments

- ✓ Nanowire arrays Sensors (ZnO, ZnO/LSCO)
- ✓ Nanofibrous films Sensors (LSMO, CeO₂, Pt/CeO₂)
- ✓ Initial biomodular sensor fabrication and testing on nanowires/films (NiO/Pt, ZnO/Pt)

Electrodes and high temperature sensor testing setup

Liu et al., 2012, RSC Advances, In press. Gao et al., 2012, In preparation.

ZnO/LSCO composite nanowire arrays

Gao et al., 2010, J. Phys. D., (fast track communication)

Thermal stability under reducing atmosphere

Improved thermal stability

ZnO and ZnO/LSCO nanowire Sensors

Excellent reversibility and Improved Sensitivity

ZnO and ZnO/LSCO nanowire sensors

 Improved response and recovery (O₂, CO, SO_x, NO_x, H₂)

Response and recovery: tens of seconds faster in ZnO/LSCO than ZnO.

Gao et al., 2012, In preparation.

12

ZnO/LSCO nanowire sensors:

Thermal stability

- Early ambient results: ZnO/LSCO showed great structure and chemical stability up to 1000 °C for 24 hours.
- Before and after 800 °C gas sensor test for a few days under multiple gaseous atmosphere (O₂, N₂, CO, CO₂, SO_x, H₂, NO_x) with cyclic ramping and cooling history.

(La,Sr)MnO₃ nanofibers sensors

High temperature stability and sensing performance

CeO₂ nanofibers sensors – Characterization

- CeO₂₍₁₀₀₀₎ NFs: electrospinning calcined at 1000 °C for 3 h
- CeO_{2(1000×3)} NFs : heating/cooling cycle 1000°C - T_{room} (3 times)

Liu et al., 2012, RSC Advances, Submitted

CeO₂ nanofibers sensors – O₂ & CO sensing

800 °C and 1000 °C

CeO₂ nanofibers sensors – O₂ & CO sensing

O₂: Calibration curves

Pt-CeO₂ nanofibers – Characterization

Pt-CeO₂ nanofibers sensors

Highly selective CO detection

800 °C gas detection

Liu et al., 2012, Anal. Chem., In preparation Liu et al., 2012. Patent Application, In preparation

Nanostructured bimodular sensor platform Potentiometric testing

Project Deliverables

ID	Title/Description	Planned Completion Date	Finished? (Y/N)
D1	Quarterly Report	1/30/09	Y
D2	Quarterly Report	04/30/10	Y
D3	Quarterly Report	07/30/10	Y
D4	Quarterly Report	10/30/10	Y
D5	Quarterly Report	1/30/11	Y
D6	Draft Final Report – BP1	2/02/11	Y
D7	Final Report – BP1	4/30/11	Y
D8	Quarterly Report	7/30/11	Y
D9	Quarterly Report	10/30/11	Y
D10	Quarterly Report	1/30/12	Y
D11	Draft Final Report – BP2	03/30/12	
D12	Quarterly Report	4/30/12	
D13	Quarterly Report	7/30/12	
D14	Final Report – BP2	10/30/12	20

Acknowledgement

- Graduate students: H.J. Lin, X.Y. Liu, W.J. Cai,
 X.C. Sun
- Postdocs: Dr. H.Y. Gao
- Project manager: Dr. Rick Dunst
- Cost-share and infrastructure/facility support:
 UConn RF, Uconn SOE/IMS/C2E2
- Funding support: CCR (formerly AR) Program,
 DOE-NETL

